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SUMMARY

We present an improved immersed boundary method for simulating incompressible viscous flow around
an arbitrarily moving body on a fixed computational grid. To achieve a large Courant–Friedrichs–Lewy
number and to transfer quantities between Eulerian and Lagrangian domains effectively, we combined the
feedback forcing scheme of the virtual boundary method with Peskin’s regularized delta function approach.
Stability analysis of the proposed method was carried out for various types of regularized delta functions.
The stability regime of the 4-point regularized delta function was much wider than that of the 2-point
delta function. An optimum regime of the feedback forcing is suggested on the basis of the analysis of
stability limits and feedback forcing gains. The proposed method was implemented in a finite-difference
and fractional-step context. The proposed method was tested on several flow problems, including the flow
past a stationary cylinder, inline oscillation of a cylinder in a quiescent fluid, and transverse oscillation
of a circular cylinder in a free-stream. The findings were in excellent agreement with previous numerical
and experimental results. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The immersed boundary (IB) method has received much attention in the field of numerical simu-
lations because it can easily handle viscous flows over or inside complex geometries in a Cartesian
grid system. In the IB method, no-slip boundary conditions are imposed at the IBs by introducing
a momentum forcing into the Navier–Stokes (N–S) equations. Hence, N–S solvers based on a
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Cartesian grid system can be easily extended to complex flow geometries without the need for a
boundary-conforming grid. Depending on how the momentum forcing is applied, the IB method
is classified as either a discrete or continuous forcing approach [1].

In the discrete forcing approach [2–6], the desired velocities at the IB are obtained by inter-
polating neighboring points, and the momentum forcing is acquired directly from the discretized
equation of motion. Kim et al. [3] introduced a mass source/sink to satisfy the local continuity near
IB points. Huang and Sung [4] improved the accuracy near the IB by using more accurate mass
source/sink. Kim and Choi [5] developed an IB method adopting a non-inertial reference frame
that is fixed to the body with an arbitrary motion. However, to simulate flow around a moving
body using a fixed Eulerian grid system, more complicated interpolation schemes are needed [6].

In contrast to the discrete forcing approach, the continuous forcing approach can be applied in
a straightforward manner when simulating flows with moving boundaries. The continuous forcing
approach, which was pioneered by Peskin [7] to simulate blood flow in the human heart, has
proved to be an efficient method for simulating fluid–structure interactions. In Peskin’s classical
IB method [7–11], a singular force distribution at arbitrary Lagrangian positions is determined
and applied to the flow equations in the fixed reference frame via a regularized delta function. For
immersed elastic boundaries, the singular force is just the elastic force that can be derived by the
principle of virtual work or a constitutive law such as Hooke’s law. For rigid boundaries, however,
the constitutive laws for elastic boundaries are not generally well posed. Goldstein et al. [12]
developed a virtual boundary method that employs a feedback forcing to enforce the no-slip
condition at the surface of a structure embedded in a fluid domain. Saiki and Biringen [13] modified
the virtual boundary formulation and proposed the so-called ‘area-weighted’ virtual boundary
method. However, both Goldstein et al. and Saiki and Biringen reported that this method suffers
from a very severe time-step restriction since the amplitude of the feedback forcing needs to
be large for proper operation, resulting in a very stiff system. Lee [14] relieved the time-step
restriction by exploiting the stability characteristics of the virtual boundary method. Instead of
the regularized delta function, in the virtual boundary method the velocities at the surface of a
structure are obtained using a bilinear interpolation, and the momentum forcing is extrapolated
back to the surrounding grid points by area-weighted averages. Under this approach, the total
amount of forcing is not conserved, in contrast to the conservation of the total forcing achieved
using the regularized delta function, as will be analyzed in detail later in this paper. Lai and
Peskin [9] considered the boundary to be elastic but extremely stiff for simulation of flow with
a rigid body. In their method, IB points move according to the local flow velocity, while in the
virtual boundary method the boundary points do not move from the body surface. Accordingly, in
Peskin’s IB method both the position and the velocity of the IB by feedback forcing have to be
compensated. On the contrary, in the virtual boundary method only the velocity of the boundary
has to be corrected because the boundary remains on the body surface. As a result, the limitation
of the computational time step of the virtual boundary method is different from that of Peskin’s
IB method due to differences of the forcing scheme. Uhlmann [15] retained the use of regularized
delta functions in his direct forcing method, which can be regarded as a special case of the feedback
forcing scheme. Huang et al. [16] proposed an IB formulation for simulating flexible inextensible
filaments in a uniform flow. In their method, the Eulerian fluid motion and the Lagrangian filament
motion were solved independently and their interaction force was explicitly calculated using a
feedback law.

In this study, we sought to find an efficient IB formulation by accounting for the regularized
delta functions and feedback forcing schemes. To this end, we made a detailed comparison of
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Peskin’s IB method and the virtual boundary method. Stability analysis of the feedback forcing
gains was performed for various types of regularized delta functions to relax the computational
time-step restriction and to decrease the l2-norm error and avoid non-growing oscillations. The
analytical solution was compared with numerical results obtained using the proposed IB method.
From the stability analysis, an optimum region of the feedback forcing gains was obtained. The
present method was validated by simulating three flow problems, namely flow past a stationary
cylinder, inline oscillation of a cylinder in a quiescent fluid, and transverse oscillation of a circular
cylinder in a free-stream.

2. NUMERICAL APPROACH

The computational configuration considered in the present work is a circular solid object embedded
in a fluid, as shown in the schematic diagram in Figure 1. The fluid motion is defined on an
Eulerian–Cartesian grid, and the fluid–solid interface is discretized using a Lagrangian grid fixed
on the body. The fluid–solid interface �S is evenly distributed by NL Lagrangian points, which
are denoted by

Xl ∈�S, 1�l�NL (1)

Each Lagrangian point has a discrete volume �Vl with thickness equal to the mesh width h. NL is
selected such that a discrete volume is comparable with a finite volume of the Eulerian grid, i.e.
�Vl ≈hm , where m is the number of space dimensions. Although we illustrate only a circular solid
object in Figure 1, the present method can be applied to objects of arbitrary shape.

The governing equations are the N–S equations and the continuity equation, which are
discretized as

un+1−un

�t
+Nun+1=−Gpn+1/2+ 1

2Re
(Lun+1+Lun)+fn (2)

Dun+1=0 (3)

where u is the velocity vector, p is the pressure, Re is the Reynolds number, and f is the momentum
forcing applied to enforce the no-slip boundary condition along the IB. In Equations (2) and (3), N
is the linearized discrete convective operator, G is the discrete gradient operator, L is the discrete

lS∂
X l

lV∆

S

Figure 1. Schematic diagram of a circular solid object S in a fluid domain.
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Laplacian operator, and D is the discrete divergence operator. Here, n denotes the nth time step and
�t denotes the time increment. The discrete spatial operators N ,G, L , and D are evaluated using
the second-order central finite-difference scheme [17]. The present method is based on the N–S
solver adopting the fractional-step method and a staggered Cartesian grid system. A fully implicit
time advancement is employed, in which both convection and diffusion terms are advanced using
the second-order Crank–Nicholson scheme.

The present numerical algorithm, including the fluid–solid interaction, is formulated as follows:

Fn =�
∫

(Un(Xl)−Ud(Xl))dt+�(Un(Xl)−Ud(Xl)) (4)

fn =
∫

Fn�h(x−Xl)ds (5)

1

�t
u∗+Nu∗− 1

2Re
Lu∗ = 1

�t
un−Gpn−1/2+ 1

2Re
Lun+fn (6)

�t DG�p=Du∗ (7)

un+1=u∗−�tG�p (8)

pn+1/2= pn−1/2+�p (9)

Un+1=
∫

un+1�h(x−Xn+1
l )dx (10)

where Ud(Xl) is the desired velocity of the Lagrangian point and u∗ is the intermediate fluid
velocity. In the present method, the Lagrangian point is required to move in concert with the rigid-
body motion of a solid object. This is achieved by means of the feedback forcing in Equation (4),
which is calculated so as to make the velocity at the Lagrangian point equal to the desired velocity.
Note that the feedback forcing points are located in a staggered fashion like the velocity components
defined on a staggered grid. Next, the feedback forcing in the Lagrangian domain is transferred to
the Eulerian domain by using the regularized delta function (Equation (5)). In Equations (6)–(9),
we solve un+1 and pn+1/2 using the fractional-step method with the momentum forcing calculated
explicitly. Velocity and pressure are decoupled by approximate factorization which is based on
block LU decomposition. To calculate the intermediate velocity u∗ in Equation (6), the approximate
factorization is further extended to the velocity components. It results in a significant reduction in
computation time and memory by avoiding the inversion of a large sparse matrix. The pressure
Poisson equation (Equation (7)) is then solved by a direct method using fast Fourier transform or a
multigrid method. The details of the present N–S solver can be found elsewhere [17]. The Eulerian
velocity at the new time step is interpolated to the Lagrangian points by using the regularized delta
functions as kernels in the transfer step (Equation (10)). The Lagrangian velocity obtained is then
used to calculate the feedback forcing in the next time step. This procedure is repeated.
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The regularized delta function is employed to transfer quantities between Lagrangian and Eule-
rian locations in Equations (5) and (10), respectively,

U(Xl)=∑
u(x)�h(x−Xl)h

3, 1�l�NL (11)

f(x)=
NL∑
l=1

F(Xl)�h(x−Xl)�Vl (12)

In the domain where quantities are transferred between Lagrangian and Eulerian locations, a
uniform grid with mesh width h is used. In this study, four types of regularized delta functions
are chosen:

�h(x)= 1

h3
�

( x1
h

)
�

( x2
h

)
�

( x3
h

)
(13)

�(r)=
{
1−|r |, |r |�1

0 otherwise
(14)

�(r)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
3 (1+

√
−3r2+1), |r |�0.5

1
6 (5−3|r |−

√
−3(1−|r |)2+1), 0.5�|r |�1.5

0 otherwise

(15)

�(r)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
8 (3−2|r |+

√
1+4|r |−4r2), 0�|r |�1

1
8 (5−2|r |−

√
−7+12|r |−4r2), 1�|r |�2

0 otherwise

(16)

�(r)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

61
112 − 11

42 |r |− 11
56 |r |2+ 1

12 |r |3+
√
3

336 (243+1584|r |−748|r |2

−1560|r |3+500|r |4+336|r |5−112|r |6)1/2, 0�|r |�1

21
16 + 7

12 |r |− 7
8 |r |2+ 1

6 |r |3− 3
2�(|r |−1), 1�|r |�2

9
8 − 23

12 |r |+ 3
4 |r |2− 1

12 |r |3+ 1
2�(|r |−2), 2�|r |�3

0 otherwise

(17)

Equation (14) shows the 2-point regularized delta function (linear interpolation in each direction),
which is similar to the ‘area-weighted’ virtual boundary method of Saiki and Biringen [13].
Equation (15) shows the 3-point regularized delta function introduced by Roma et al. [8], and
Equations (16) and (17) are the 4- and 6-point regularized delta functions introduced by Peskin [10]
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Figure 2. Four types of regularized delta functions.

and Griffith et al. [11], respectively. Note that all four types of delta functions have the property∑
�h(x−X)h3=1 (18)

which is the discrete analogue of the basic property of the Dirac delta function. In Figure 2, the
value of �(r) is maximum at r =0 for all functions, and the value of �(0) decreases as the points
of the delta function increase, except for the 6-point delta function. These properties are kernels
of the stability analysis in the following section.

3. STABILITY ANALYSIS

First, we consider the simple case in which the Lagrangian domain is a point located at x1+r(x2−
x1) between two Eulerian points x1 and x2 in 1-D space, as shown in Figure 3(a). The velocity
at the Lagrangian point U (t) is obtained using the 3-point regularized delta function according to
Equation (11):

U (t)=�(−r)u1(t)+�(1−r)u2(t)+�(2−r)u3(t) (19)

where u1(t),u2(t), and u3(t) are velocities at Eulerian points x1, x2, and x3, respectively. The
value of r varies between 0.5 and 1.5, depending on the location of the Lagrangian point. The
momentum forcing is calculated by the feedback law (Equation (4)) and spreads back to the three
nearby Eulerian points using Equation (12) as follows:

f1(t)=�(−r)F(t), f2(t)=�(1−r)F(t), f3(t)=�(2−r)F(t) (20)

Since only one Lagrangian point is considered, no summation is necessary. Stability analysis for
this method should be carried out using the largest Eulerian forcing as this represents the worst
case. When the Lagrangian point coincides with the Eulerian point x2 at r =1, the Eulerian forcing
reaches its maximum, i.e.

f2(t)��(0)F(t)= 2
3 F(t) (21)

where �(0)= 2
3 for the 3-point regularized delta function.
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Figure 3. Virtual surface velocity and forcing in the 1-D case: (a) point Lagrangian domain and (b) line
Lagrangian domain; •, Lagrangian grid point; ◦, Eulerian grid point.
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Figure 4. Virtual surface velocity and forcing in the 2-D case: line Lagrangian domain; •, Lagrangian
grid point; ◦, Eulerian grid point.

Next, we consider the case in which the Lagrangian domain is a line immersed in a 1-D Eulerian
domain (Figure 3(b)). For simplicity, we assume that the adjacent Eulerian velocities are uniform.
Hence, we haveU (t)=u(t) according to Equation (18), regardless of the position of the Lagrangian
point. The momentum forcing at the Eulerian point x2 is then obtained:

f2(t)=�(2−r)F(t)+�(1−r)F(t)+�(r)F(t)=F(t) (22)

In Figure 4, this analysis is extended to the 2-D case (the thick line indicates the Lagrangian
domain). In this case, we again assume that the adjacent Eulerian velocities are uniform. The worst
case from the viewpoint of stability occurs when all Lagrangian points coincide with the Eulerian
points. In that case, the maximum forcing at the Eulerian point f2 is acquired:

f2(t) = �(−1)�(0)F(t)+�(0)�(0)F(t)+�(1)�(0)F(t)

= �(0){�(−1)F(t)+�(0)F(t)+�(1)F(t)}
= �(0)F(t) (23)

Similarly, we can obtain the maximum momentum forcing for other cases; the results are listed in
Table I. In its general form, the maximum momentum forcing can be expressed as

fmax(t)=CmaxF(t)=Cmax

(
�
∫ t

0
u(t ′)dt ′+�u(t)

)
(24)
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Table I. Maximum Eulerian forcing for 1-D, 2-D, and 3-D cases.

1-D 2-D 3-D

Point �(0)F(t) (�(0))2F(t) (�(0))3F(t)
Line F(t) �(0)F(t) (�(0))2F(t)
Area — F(t) �(0)F(t)

where Cmax is the coefficient of the maximum Eulerian forcing for each case. Here, we consider
a stationary problem for simplicity, i.e. Ud(t)=0 in Equation (4). Hence, the N–S equations can
be expressed as

un+1−un

�t
+Nun+1=−Gpn+1/2+ 1

2Re
(Lun+1+Lun)+Cmax

(
�

n∑
i=0

ui�t+�un
)

(25)

where
∑n

i=0u
i�t is an approximation to

∫ t
0 u(t ′)dt ′. In the present method, since �(≈1/�t2) and

�(≈1/�t) are much larger than the other terms, we can simplify Equation (25) as

un+1−un ≈Cmax�t

(
�

n∑
i=0

ui�t+�un
)

(26)

To obtain the recurrence formula for the stability analysis, the equation at the previous time step
is subtracted from the equation at the present time step, resulting in

un+1−2un+un−1=�′un+�′(un−un−1) (27)

where �′ =Cmax��t2 and �′ =Cmax��t . Substitution of un =u0rn (r ≡ui+1/ui , i=0,1,2, . . . ,n)
into Equation (27) leads to the equation for r

r2−(2+�′+�′)r+1+�′ =0 (28)

Thus, the stability region abs(r)�1 is

−�′−2�′�4⇒−Cmax��t2−2Cmax��t�4 (29)

From the above equation, we can see that the stability region is mainly affected by the coefficient
Cmax, which depends on the type of Lagrangian domain and Eulerian domain, as shown in Table I.
For example, for the case in which the Lagrangian domain is a line in a 2-D flow, Cmax=�(0),
which is smaller than Cmax=1 for the case where the Lagrangian domain is a plane in a 2-D flow. In
other words, without applying the Lagrangian forcing to the interior of the solid object (Figure 1),
the stability region relaxes for a given feedback forcing gain (�,�), as shown in Equation (29).
The stability region can also be affected by the time-advancing scheme. Although only the forward
Euler scheme is considered here, the stability regimes for various time-advancing schemes can be
obtained in a similar way [14].
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Figure 5. Stability regimes in 2-D flow for several types of delta functions. The dot/cross denotes
stable/unstable cases in the simulation of a cylinder moving in a 2-D flow.

Stability regimes of different types of delta functions are displayed in Figure 5 for the case
in which the Lagrangian domain is a line immersed in a 2-D flow. The flow is stable in the
region below the line and unstable above the line. Stability regimes are wider for the smaller
value of �(0) in the regularized delta functions. Compared with the 2-point regularized delta
function, the stability region of the 4-point regularized delta function is twice as wide in each
direction (−��t2,−��t). To validate the numerical analysis, simulations of a moving cylinder in
a 2-D flow using the 4-point regularized delta function were carried out for different −��t2’s and
−��t’s. Stable and unstable cases are denoted by circles and crosses, respectively, in Figure 5. The
analytical solution is in good agreement with the numerical results obtained using the present IB
method. It is also confirmed that the assumption that the adjacent Eulerian velocities are uniform
is reasonable for the above stability analysis. In fact, the difference between adjacent velocities is
negligible due to the small mesh width. Under this assumption, the stability analysis process is
significantly simplified compared with Lee [14]. Since the worst case is always considered in the
theoretical analysis, the actual stability regions of the numerical results will be slightly wider than
those of the analytical predictions, as shown in Figure 5.

4. COMPARISON BETWEEN PESKIN’S IB METHOD AND THE VIRTUAL
BOUNDARY METHOD

4.1. Feedback forcing scheme

In Peskin’s IB method for solving the flow past a circular cylinder, the boundary is considered
to be elastic but extremely stiff, as shown in Figure 6(a). A feedback forcing is formulated as
follows:

F(s, t)=�(Xbs(s, t)−Xib(s, t)) (30)
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Figure 6. Schematic diagram for comparison of the feedback forcing scheme: (a) Peskin’s IB method and
(b) the virtual boundary method.

where Xib(s, t) and Xbs(s, t) denote the IB and its equilibrium location, and the stiffness coefficient
�	1. The IB Xib(s, t) of the next time step moves with the local fluid velocity.

On the other hand,in the virtual boundary method the body surface Xbs(s, t) is considered as a
virtual boundary where the feedback forcing is applied on the fluid so that the fluid will be at rest
on the surface (see Figure 6(b)). Thus, the forcing term is expressed as

F(s, t)=�
∫ t

0
(Uvb(s, t

′)−Ubs(s, t
′))dt ′+�(Uvb(s, t)−Ubs(s, t)) (31)

where Uvb(s, t) denotes the velocity at the virtual boundary interpolated from the fluid velocity
field, and Ubs(s, t) denotes the velocity at the surface of the moving body. To apply the feed-
back forcing defined in Equation (31), � and � should be large negative constants to enforce
the no-slip condition. The virtual boundary location Xvb(s, t) is considered as the body surface
Xbs(s, t).

Comparing Figure 6(a) and (b), we can see that Peskin’s IB method uses a boundary whose
position moves according to the local flow velocity, whereas the virtual boundary method uses
a boundary that always coincides with the body surface. Accordingly, in Peskin’s IB method,
position compensation must be implemented to correct the position and the velocity of each point
on the boundary. In the virtual boundary method, however, velocity compensation is implemented
to correct only the velocity of each point on the boundary, because the boundary remains on the
body surface. Such differences between the two methods require that |�| in Peskin’s IB method be
much larger than |�| in the virtual boundary method to ensure accurate body surface conditions.
This suggests that the time-step restriction will be stricter for Peskin’s IB method than for the
virtual boundary method.

4.2. Transfer of quantities between Lagrangian and Eulerian locations

In both methods, a transfer process between Lagrangian and Eulerian locations is necessary since
the virtual boundary points do not always coincide with the computational meshes in the discrete
grid system. The transfer process of Peskin’s IB method is explained in Equations (11) and (12),
while the transfer process is a little different in the virtual boundary method. First, the velocity at
the virtual boundary point (Xvb) is obtained through a linear interpolation using the velocity at
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the nearby mesh points (xi ):

U(Xl
vb)=

∑
u(xi )�vb(xi −Xl

vb), 1�l�NL (32)

�vb(x)=�
( x1
h

)
�

( x2
h

)
�

( x3
h

)
, �(r)=

{
1−|r|, |r|�1

0 otherwise
(33)

where �(r) is the same as that of the 2-point regularized delta function, and NL is the number
of points distributed densely on the virtual boundary. After the feedback forcing is obtained, it is
extrapolated back to the nearby mesh points:

f(xi )= 1

NV

NV∑
i=1

F(Xl
vb)�vb(X

l
vb−xi ), 1�l�NL (34)

where NV is the number of virtual boundary points Xl
vb that influence the mesh point xi .

The velocity approximation is almost the same in the two methods, but the forcing approximation
is not. There are two significant differences in the forcing approximation. One difference is the
number of Lagrangian points. The virtual boundary method uses many points, leading to high
computational overheads, and the rule for determining the number of points is ambiguous. By
comparison, Peskin’s IB method uses fewer points; in this method, it is recommended to use the
number of Lagrangian points that makes the volume of each forcing point equivalent to a finite
volume of the Eulerian grid (�Vl ≈hm , where m is the number of space dimensions) [15]. The
second major difference is the conservation of quantities between the Lagrangian and Eulerian
domains. Peskin’s IB method uses the class of regularized delta function as kernel in the transfer
steps between Lagrangian and Eulerian locations. Accordingly, the total amount of quantities is not
changed by the transfer step [10, 15]. The virtual boundary method, by contrast, uses an average
forcing and hence changes the total amount of quantities between the transfer steps. Figure 7
displays 2-D cases for the two methods. We assume that all values of the forcing in the Lagrangian
domain are F . Figure 7(a) illustrates Peskin’s IB method using a 2-point regularized delta function.
The Eulerian forcing f can be obtained using

f = �(1−rx )�(1−ry)F+�(1−rx )�(ry)F+�(rx )�(1−ry)F+�(rx )�(ry)F

= �(1−rx ){�(1−ry)F+�(ry)F}+�(rx ){�(1−ry)F+�(ry)F}
= �(1−rx )F+�(1−rx )F, (�(1−r)+�(r)=1)

= F (35)

Since Peskin’s IB method conserves the forcing between the Lagrangian and Eulerian domains,
the drag and lift forces of a stationary cylinder can be obtained by integrating the Lagrangian
forcings on the boundary �S [9]:

FD=−
∫

�S
fx dx=−

∫
�S

Fx ds, FL =−
∫

�S
fy dx=−

∫
�S

Fy ds (36)
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Figure 7. Schematic diagram of the forcing transfer process for area Lagrangian domain in the 2-D case:
(a) Peskin’s IB method (b) virtual boundary method; •, Lagrangian point; ◦, Eulerian point.

where FD and FL are the drag and lift forces, respectively. Figure 7(b) shows that the Eulerian
forcing f is not equal to F by the virtual boundary method, i.e.

f = lim
Nx ,Ny→∞

1

Nx

1

Ny

Nx∑
i=1

Ny∑
j=1

F(1−|rx,i |)(1−|ry, j |)

= lim
Nx→∞

F

2

Nx∑
i=1

(1−|rx,i |)�rx lim
Ny→∞

1

2

Ny∑
j=1

(1−|ry, j |)�ry

= F

2

∫ 1

−1
(1−|rx |)drx 1

2

∫ 1

−1
(1−|ry |)dry = F

4
(37)

where �rx =2/Nx ,�ry =2/Ny , and Nx and Ny are the numbers of Lagrangian points in the
x- and y-directions, respectively. The virtual boundary method does not conserve the forcing in
the transfer step.

5. RESULTS AND DISCUSSION

5.1. Stationary cylinder

The flow past a stationary cylinder in a free-stream was simulated at two different Reynolds
numbers (100 and 185) based on the free-stream velocity u∞ and the cylinder diameter. The first
case was simulated to compare the present method with other methods such as Peskin’s IB method.
The second case was examined to investigate the effects of the feedback forcing gains (� and �)
and types of delta functions.

5.1.1. Stationary cylinder in a free-stream at Re=100. We used a computational domain of
0�x, y�8 and a cylinder with diameter d=0.30 whose center is located at (1.85,4.0). A Dirichlet
boundary condition (u/u∞ =1,v=0) was used at the inflow and far-field boundaries, and a
convective boundary condition (�ui/�t+c�ui/�x=0, where c is the space-averaged streamwise
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Table II. Comparison of drag coefficient, lift coefficient, and Strouhal number with
those obtained in previous studies.

h � or −� �t C̄D C ′
L St CFL

Case 1 1
64 4.8×104 1.2×10−2 1.44 0.35 0.168 1.35

Case 2 1
64 4.8×104 6.0×10−3 1.44 0.35 0.168 0.7

Case 3 1
64 4.8×104 6.0×10−3 1.37 0.34 0.163 0.7

Lai and Peskin [9] 1
64 4.8×104 1.8×10−3 1.52 0.29 0.155 —

Lai and Peskin [9] 1
128 9.6×104 9.0×10−4 1.45 0.33 0.165 —

Uhlmann [15] 1
128 — 3.0×10−3 1.50 0.35 0.172 —

Kim et al. [3] — — — 1.33 0.32 0.165 —
Linnick and Fasel [18] — — — 1.34 0.33 0.166 —
Liu et al. [19] — — — 1.35 0.34 0.165 —
Huang and Sung [4] — — — 1.36 0.33 0.167 —

velocity) was used at the outflow boundary. Table II shows the drag and lift coefficients, CD
and CL, obtained using the proposed method, as well as the Strouhal number defined from the
oscillation frequency of the lift force. The drag and lift forces were obtained by integrating all
the momentum forcing applied on the boundary, as shown in Equation (36). Parameters such as
the mesh width h, time step �t , and feedback forcing gain � were selected to match the conditions
of Lai and Peskin [9] and a 4-point regularized delta function was employed [9]. To compare the
present method with Peskin’s IB method, we used feedback forcing gains of �=−4.8×104 and
�=0. Table II indicates that the value of �=−4.8×104 used in the present method is large enough
to obtain reliable results. By contrast, the results of Lai and Peskin [9] using �=4.8×104 deviate
somewhat from the other results, especially those obtained in the same study using �=9.6×104.
These findings are consistent with previous reports showing that compared with the value of −� in
the virtual boundary method, a larger value of the stiffness coefficient � in Peskin’s IB method is
required to ensure accurate results for a rigid boundary problem [1]. Since we tested the stability
region of feedback forcing gains (�,�) with the 4-point regularized delta function (see Figure 5),
we used a computational time step of 1.2×10−2(−��t2=6.912) to be consistent with −��t2<8.
As a consequence, the present results are in good agreement with those of Lai and Peskin [9],
even though the computational time step of the present method (�t=1.2×10−2) is about an
order of magnitude larger than that of Lai and Peskin (�t=9.6×10−4). The maximum Courant–
Friedrichs–Lewy (CFL) number in the present simulations exceeded 1 due to the adoption of the
feedback forcing scheme and the optimization of parameters by stability analysis. Uhlmann [15]
also simulated the same problem with the same domain size. Uhlmann’s results showed some
deviation even though the computational time step and mesh size are smaller than those used in
the present work. When the domain size is enlarged to 0�x, y�16 (case 3 in Table II), the present
results agree better with those of other studies [3, 18–20].

Table III shows the influences of �X/h on drag and lift coefficients and Strouhal number using
the 4-point delta function at −��t2=3.9 and −��t=1.9. The mesh width h was 1

128 , and the
computational time step was �t=0.006, giving a maximum CFL number of approximately 1.4.
Four cases were simulated using evenly distributed Lagrangian points and the last one was tested
using non-uniformly distributed Lagrangian points. In the non-uniform case, �X/h is increased
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Table III. Influence of the ratio of Lagrangian point distance to Eulerian grid width on
drag and lift coefficients and Strouhal number using the 4-point delta function.

�X/h NL C̄D C ′
L St

2 60 1.45 0.36 0.171
1 120 1.45 0.36 0.171
0.5 241 1.45 0.35 0.171
0.25 482 1.45 0.35 0.171
0.25−2 142 1.45 0.36 0.171

from 0.25 to 2 by the ratio of approximately 1.015. The values resulting from the variations of
�X/h are very similar. Actually, the differences of C̄D,C ′

L, and St are within 3%, indicating that
the number of Lagrangian points has a negligible effect on the results. This also implies that the
present method does not require even distribution of Lagrangian points. In this study, however,
the Lagrangian points are selected such that a discrete volume is the same as the finite volume
of the Eulerian grid, i.e. �Vl ≈hm , for simplicity and computational efficiency of the solution
procedure.

5.1.2. Stationary cylinder in a free-stream at Re=185. Next we consider the case of a large
computational domain −50d�x, y�50d , where d denotes the cylinder diameter. The number of
grid points in the streamwise (x) and transverse (y) directions was 352×192, respectively. Thirty
grid points in each direction were uniformly distributed inside the cylinder and the remaining grid
points were stretched outside the cylinder. The cylinder surface was made up of 94 Lagrangian
points, and the Reynolds number Re=u∞d/� was set at 185. The computational time step was
�t=0.01, leading to a maximum CFL number of approximately 0.6. The boundary conditions at
the inflow, far-field and outflow boundaries were the same as those of the former case at Re=100.

Four different forcing gains were simulated using a 3-point regularized delta function. For a
quantitative comparison, an l2-norm error is defined as

l2-norm error≡
√

1

NL

NL∑
k=1

(U(Xk, t))2 (38)

where NL is the number of Lagrangian points and U(Xk, t) is the velocity at the kth Lagrangian
point. l2-Norm errors of the four cases, displayed in Figure 8, show that the error converges to a
smaller value for the larger value of −��t2, and the error decays more rapidly for the larger value
of −��t . In a stationary boundary problem, −��t influences only the initial behavior of the error.
Two cases, using the same −��t2 value with different −��t values, show the same level of the
error, suggesting that −��t2 is a more critical parameter for enforcing the no-slip condition [14].
However, −��t is also important as it influences the total computation time. For −��t=0, a long
computation time is required to converge to a small value. The present findings thus indicate that
both −��t2 and −��t should be considered when optimizing the accuracy and efficiency of the
computation.

Four different types of the regularized delta functions were simulated with the largest forcing
gains in stability regimes (Figure 9). As expected, the error of the 4-point delta function
(−��t2=4,−��t=2) is smaller than those of the 2-point (−��t2=2,−��t=1), 3-point
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Figure 8. l2-Norm error of the virtual surface velocity in the streamwise direction normalized by the
free-stream velocity u∞ for different forcing gains.
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Figure 9. l2-Norm error of the virtual surface velocity in the streamwise direction
normalized by the free-stream velocity u∞ for several types of delta functions

with the largest forcing gains in stability regimes.

(−��t2=3,−��t=1.5), and 6-point delta functions (−��t2=3.2,−��t=1.6). Table IV also
shows that the result obtained using the 4-point delta function is in better agreement with previous
results [20, 21] than those of the 2-, 3-, and 6-point delta functions.

5.2. Inline oscillation of a circular cylinder

We additionally simulated a periodic inline oscillation of a circular cylinder in a fluid at rest. The
Reynolds number is defined as Re=umd/� based on the maximum velocity um and the cylinder
diameter d . The Keulegan–Carpenter number is defined as KC=um/ f d based on the frequency of
the oscillation. The parameter set of the present simulation was Re=100 and KC=5, according to
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Table IV. Comparison of drag coefficients, lift coefficients, and Strouhal numbers obtained
using several types of delta functions with the largest forcing gains in stability regions.

C̄D CLrms St

2-Point 1.343 0.454 0.190
3-Point 1.312 0.436 0.190
4-Point 1.296 0.430 0.190
6-Point 1.308 0.437 0.190
Experimental results [21] 1.28 — 0.190
Lu and Dalton [20] 1.31 0.422 0.195
Guilmineau and Queutey [21] 1.287 0.443 0.195
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0

1

2
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Figure 10. Grid distribution near the cylinder in the simulation of the flow
around a cylinder undergoing inline oscillation.

the experimental and numerical results of Dütsch et al. [22]. We set the cylinder in time-periodic
motion:

xc(t)=−Am sin(2� f t) (39)

where xc(t) is the position of the cylinder center at time t and Am is the amplitude of the oscillation.
The computational domain was −50d�x, y�50d , and the number of grid points in the oscillatory
(x) and transverse (y) directions was 416×282, respectively. Sixty grid points in each direction
were uniformly distributed inside the cylinder and the remaining grid points were stretched outside
the cylinder, as shown Figure 10. Because the cylinder oscillates in the x-direction, the uniformly
distributed region had a rectangular form with longer length in the x-direction. Neumann boundary
conditions were used at all four far-field boundaries. The number of Lagrangian points NL around
the cylinder surface was set to 188 and the computational time step was �t=T/720 based on the
period of the oscillation, leading to a maximum CFL number of approximately 0.6. The 4-point
regularized delta function was selected and the feedback forcing gain was chosen as −��t2=3.9
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and −��t=1.9, which is one of the largest cases in the stability region of the 4-point regularized
delta function.

In a moving boundary problem, the drag force is obtained by summing over the momentum
forcing on the boundary and other terms related to the acceleration of the moving boundary [15],
as follows:

FD=−
∫

�S
fx dx+ d

dt

∫
S
u dx (40)

where fx is the x-component of the force density f. The present case is the rigid-body motion on
the volume S:

d

dt

∫
S
u dx=V

duc
dt

(41)

where V is the volume of the rigid body and uc is the velocity at the cylinder center.
In Figure 11, the time history of the drag coefficient in the oscillatory direction is in excellent

agreement with that of Dütsch et al. [22]. Figure 12 shows the isolines of pressure and vorticity
for different phase angles of the oscillating cylinder motion. During the oscillation of the cylinder,
the flow is characterized by two counter-rotating vortices. These results are very similar to those
of previous studies [21, 22]. To further compare the present findings with the results of Dütsch
et al. [22], we examined the velocity profiles at four locations (Figure 13). The results agree very
well with the numerical and experimental results of Dütsch et al. [22], indicating that the present
method accurately describes the velocity field.

5.3. Transverse oscillation of a circular cylinder

Next, we simulated a periodic transverse oscillation of a circular cylinder in a free-stream:

yc(t)= Am cos(2� fet) (42)

where yc is the position of the cylinder center, and Am and fe are the amplitude and frequency
of the oscillation, respectively. The detailed conditions were Re=185 and Am/d=0.2. fo is the

t/T

C
D

0 2 4 6 8
-4

-2

0

2

4 present
Dutsch et al.[22]

Figure 11. Time history of drag coefficient at Re=100 and KC=5.
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Figure 12. Pressure and vorticity isolines (negative values dashed) at Re=100 and
KC=5 at different phase positions (�=2� f t).

natural shedding frequency from the stationary cylinder. The computational domain was 0�x, y�8
and 1024×1024 grid points were uniformly distributed in the oscillatory (x) and transverse (y)
directions, respectively. The cylinder diameter was set to d=0.30, and its center was located at
(1.85,4.0). The cylinder surface was composed by 120 Lagrangian points. A Dirichlet boundary
condition was used at the inflow and far-field boundaries, and a convective boundary condition
was used at the outflow boundary.

The behavior of the l2-norm error of the streamwise virtual surface velocity is shown in Figure 14
for three different forcing gains with the 3-point regularized delta function. The error converges
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Figure 13. Comparison of the velocity components between the present computation and the experimental
results of Dütsch et al. [22] at four cross-sections for different phase positions (�=2� f t).
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Figure 15. Time history of drag coefficient (a) for different forcing gains using the 3-point delta function
and (b) for different types of delta functions with −��t2=0.4 and −��t=1.

to a smaller value for larger −��t2, as observed above for the stationary problem, and the error
decays rapidly for larger −��t . Since the initial decays of the error are important in compensation
of the boundary condition in moving boundary problems, the error also converges to a smaller
value for larger −��t . Accordingly, −��t2 and −��t should be as large as possible to decrease
the error.

Figure 15(a) shows the time histories of the drag coefficient for three different forcing gains,
determined using the 3-point delta function. Non-growing oscillations become smaller as −��t
is increased, but are increased for larger −��t2. The influence of −��t is greater than that of
−��t2, in that when −��t is large the non-growing oscillations are not significant regardless of
the value of −��t2. The time history of the drag coefficient is illustrated in Figure 15(b) for four
types of delta functions with the same forcing gains. As the number of points in the regularized
delta function increases, the non-growing oscillations decrease. This suggests that the 4-point
regularized delta function with large forcing gains yields better results.

To investigate the effect of delta functions on CPU time, we performed the first 100 time steps of
the simulation using 100,1000, and 10 000 Lagrangian points for different types of delta functions.
These computations were performed on Intel 3.4GHz Pentium 4 Xeon processor. In Table V, CPU
time increases for more number of points in the regularized delta function, and this tendency is
evidently shown in 10 000 Lagrangian points. In this study, all cases were simulated in 2-D using
the number of Lagrangian points of approximately 100; hence, the differences of CPU time among
different delta functions are relatively small. In 3-D cases, however, a k-point delta function is
supported by k3 grid cells and much more Lagrangian points are used. Thus, the regularized delta
function can be an important factor on computational costs in 3-D cases.

For a further comparison of the present results with previous ones, we performed simulations
using a large computational domain of dimensions −50d�x, y�50d , with a grid size of 416×282.
Sixty grid points were uniformly distributed in each direction inside the cylinder and the grids
were stretched outside the cylinder. The cylinder surface was made up of 188 Lagrangian points.
Several cases were simulated for different oscillating frequencies in the range 0.8� fe/ fo�1.2.
The computational time step was chosen as �t=T/720 based on the period of the oscillation,
leading to a maximum CFL number in the range of 0.7–1.1. The 4-point regularized delta function
was employed and the feedback forcing gains were −��t2=3.9 and −��t=1.9. Time histories
of the drag and lift coefficients for 0.8� fe/ fo�1.2 are illustrated in Figure 16. The drag and lift
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Table V. Effect of different types of delta functions and the numbers
of Lagrangian points on CPU time (in seconds) required for the first

100 time steps of the simulation.

NL=100 NL=1000 NL=10000

2-Point 187.25 188.35 193.34
3-Point 187.58 188.65 197.53
4-Point 187.66 188.85 198.08
6-Point 188.20 190.55 213.24
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Figure 16. Time history of drag and lift coefficients for Re=185 and Ae/D=0.2 for fe/ fo values of
(a) 0.80, (b) 0.90, (c) 1.00, (d) 1.10, (e) 1.12, and (f) 1.20.

coefficients behave regularly once vortex shedding is established. For fe/ fo>1.0, both the drag
and lift coefficients exhibit beat phenomena, with the beat frequency increasing with excitation
frequency. These results are in good agreement with those of Guilmineau and Queutey [21]. The
variations of the mean drag, rms drag, and lift fluctuation coefficients as a function of fe/ fo
are presented in Figure 17(a), and the phase angles between the lift coefficient and the vertical
position of the cylinder are shown in Figure 17(b). The mean drag coefficient increases with
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increasing fe/ fo up to a peak at fe/ fo=1.0, after which it decreases with further increases of
fe/ fo. The rms lift fluctuation coefficients and the phase angles show a change at fe/ fo=1.1,
when vortex switching occurs [21]. The present results agree well with those of Kim and Choi [5].
The previous methods [5, 21] were based on a non-inertial reference frame that is fixed to the
body with an arbitrary motion, while in the present method we use a fixed reference frame and
the body is allowed to move across the grid line. Thus, the present method can be extended in a
more straightforward manner to multi-body problems or flexible body problems, e.g. the studies of
Huang et al. [16].

6. CONCLUSIONS

In this study, we compared the virtual boundary method and Peskin’s IB method, with a focus on two
aspects: the feedback forcing scheme and the transfer process of quantities between Lagrangian and
Eulerian locations. The feedback forcing scheme of the virtual boundary method made it possible to
use a larger CFL number than was possible in Peskin’s IB method, thereby ensuring accurate body
surface conditions. However, the average forcing approach of the virtual boundary method was less
effective than Peskin’s delta function approach for transferring quantities between Lagrangian and
Eulerian domains. We therefore combined the feedback forcing scheme of the virtual boundary
method with Peskin’s regularized delta function approach to improve performance. The resulting
numerical method was implemented in a finite-difference and fractional-step context. We analyzed
the stability regimes of the feedback forcing gains in the proposed method for several types of
delta functions. The stability region of the 4-point regularized delta function was much wider than
that of the 2-point delta function. The effects of regularized delta functions and feedback forcing
gains (�,�) were also investigated. For the regularized delta function supported by more points, its
non-growing oscillations became smaller. On the other hand, the l2-norm error (a measure of the
no-slip condition along the IB) converged to a smaller value for larger −��t2 and decayed faster
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for larger −��t . In the stationary boundary problem, −��t influenced only the initial behavior
of the error, whereas in the moving boundary problem the error also converged to a smaller value
for larger −��t . On the basis of the stability analysis of the present method, we can recommend
an optimum region of the feedback forcing gains that enables the use of a large CFL number and
decreases the l2-norm error and non-growing oscillations. The proposed method was applied to the
flow past a stationary cylinder, inline oscillation of a cylinder in a quiescent fluid, and transverse
oscillation of a circular cylinder in a free-stream at large maximum CFL numbers (0.6–1.4). The
present findings are in excellent agreement with previous numerical and experimental results.
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